
 

 

Marginalized Particle Filter for Banana Problem 

in Long Range Radars 
K.Chandrasekaran1, D.Shashikiran1, Dr.V.Krishnaveni2  

 

(1. Center For Adaptive Sensing Technology (CFAST), LRDE, Bangalore-93)  

(2. Dept. of Electronics and Communication Engg.PSG College of Technology, Coimbatore- 04) 

chandrasekaran.k@lrde.drdo.in 

 

 
Abstract 

  Kalman filter and its variants are the most widely used 

state estimators for target tracking in radar systems. To satisfy linear 

Gaussian prerequisite of Kalman filter for optimal performance, 

target motion is usually modeled in Cartesian coordinates. Radar 

measurements which are in polar coordinates are either converted 

to Cartesian coordinates and applied to kalman filter in linear 

fashion called Converted Measurement Kalman Filter (CMKF) or 

directly applied in non-linear fashion as the Mixed Coordinates 

Filter (MCF) called Extended Kalman Filter (EKF). Nonlinear 

conversion process present in CMKF, creates banana shaped 

uncertainty region (non-Gaussian) in the 2D Cartesian coordinate, 

which creates bias & inconsistency in the converted measurement 

and it is more severe in long range targets. Linearization present in 

the EKF, leads to filter divergence. A recent study shows that for the 

banana problem, the Regularized Particle Filter (RPF) achieves 

better performance compared to CMKF and EKF approach. In the 

present work, Marginalized Particle Filter (MPF) is proposed for the 

banana problem, which is the combination of the particle filter and 

Kalman filter to reduce the computational complexity of RPF without 

compromising in performance.  

Keywords—Tracking, Nonlinear filtering, converted 

measurement, Banana Problem  

I.  INTRODUCTION  

 Detecting the presence of the target and estimating its 
dynamics (called tracking) using the noisy position 
measurement is the major functionality of any radar system. 
Detection confirms the presence or absence of the target, once 
targets are detected its dynamics needs to be estimated using a 
noisy radar measurement at regular intervals. Kalman filter and 
its variants are used extensively for estimation of target 
dynamics. The performance of the Kalman filter will be 
optimal only when state & measurement equations are linear 
and model & measurement noise are white Gaussian [1]. 

 As shown in the Fig.1 Radar measures the position of the 
target in polar coordinate (Range and Azimuth or Bearing) 
w.r.t radar location. Target dynamics can be modelled either in 
Cartesian (Linear) or in polar (Non-Linear) coordinates. One 
approach is model the dynamics in Cartesian coordinate and 
radar measurements are converted from polar to Cartesian 
resulting in a Converted Measurement Kalman Filter (CMKF) 
[4],[5],[6],[7][16]. This nonlinear coordinate conversion 
introduces the nonGaussianity in the measurement noise which 
is the violation of the Kalman filter prerequisite. Compared to 
nonlinearity of dynamics in polar coordinates, measurement 
conversion introduces less nonlinearity   and it is negligible in 
near ranges. Another approach is to use an Extended Kalman 
filter (EKF) [4], which includes the original measurements in 
a nonlinear fashion into the target state estimation, resulting in 
a mixed coordinate filter. 

 

Fig.1, Coordinate System-2D        

Standard measurement conversion equations   

𝑥 = 𝑟 cos 𝜃                                   (1) 

  𝑦 = 𝑟 sin 𝜃                                   (2) 

 If the conversion process is unbiased, the performance of a 
converted measurement Kalman filter is superior to a mixed 
coordinate EKF [4].  Proposed approaches for conversion 
include the conventional conversion, the Unbiased Converted 
Measurement (UCM) and the Modified Unbiased Converted 
Measurement (MUCM). Recently proposed decorrelated 
version of the UCM technique (DUCM) address both the 
conversion and estimation bias[2]. 

 The mixed coordinate filter EKF is the traditional and most 
widely used nonlinear filter in real world radar tracking 
systems [1]. In this algorithm, the measurement model is 
linearized around the predicted state estimate. The EKF has the 
advantage of being easily implementable with less 
computational requirements compared to particle filter. 
However, EKF may become unstable and sensitive to track 
initialization. Recently a modified version of EKF called 
MCAEKF [10],[11] which overcomes the stability problem by 
sacrificing the range accuracy during early stage of filtering. 
Particle filters are the most appropriate state estimator for the 
nonlinear and nonGaussian estimation problems. For the 
banana problem, the Regularized Particle Filter (RPF) achieves 
better performance compared to CMKF and EKF approach 
[11].  

 The paper is organized as follows. Problem definition and 
limitations of basic filters are described in Section II. Section 
III describes various converted measurement Kalman filters 
developed for the above problem and its limitations. Section 
IV describes the Mixed Coordinate Filters and its limitations. 
Section V presents basics of particle filter and its limitations 
and results of RPF for banana problem. Section VI explains 
about the proposed Marginalized Particle Filter(MPF) 
approach for banana problem. Simulations results for long 
target scenarios are presented in Section VII. Conclusions are 
presented in Section VIII. 
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II. PROBLEM DEFINITION AND LIMITATIONS OF 

BASIC FILTERS 

 

 
 

Fig.2, A curved measurement uncertainty region   which is very accurate in 
the range direction, however has large uncertainty in the cross-range. 

 

             (a) At 50 km Range                               (b) At 271 km Range 
 

 

        (c) 2711 km Range                                           (d) 5009 km Range                                     

Fig.3, Polar to Cartesian coordinate conversion at various ranges for 0 deg 

azimuth, σr  = 0.2 m and  σa = 2 mrad.  

 

 The long-range tracking scenario presents an interesting 
challenge known as the banana (or crescent) problem in two 
dimensions [3] as in the Fig.2. As the range increases, the 
measurement uncertainty region takes a curved shape 
like a banana which is increasingly nonGaussian (non-
elliptical) in the Cartesian coordinates. Polar to Cartesian 
coordinate conversion at various ranges are shown in Fig.3. 
Gaussian uncertainty in polar becomes nonGaussian in 
Cartesian due to nonlinear conversion equation and it is more 
visible in long ranges. This problem arises when the 
measurements are accurate in range and inaccurate in cross-
range. As the range to a target becomes very large, even decent 
angular standard deviations can translate to severe inaccuracies 
in the cross range. This can result in degraded track accuracy 
and inconsistency (actual errors not commensurate with the 
filter-calculated covariance) in various filters. 

  Consider a 2-D tracking scenario in Fig.1 where the radar 
measures range ‘r’ and azimuth ‘a’ of a target. The target 
follows the continuous white noise acceleration (CWNA) 
motion model [11] with process noise intensity (PSD) �̃�. The 
state of the target is defined as 

    𝑋 = [ 𝑥   �̇�   𝑦   �̇�  ]′                             (3) 

which evolves as 

   𝑋(𝑘 + 1)  = 𝐹𝑋(𝑘) + 𝑉(𝑘)                 (4) 

where T is the sampling time and transition matrix  

                    

 

                                                                                                                                         (5) 

 

 

The covariance of the process noise in (4) is 

 

(6) 

 

 

The nonlinear measurements functions are given by 

𝑟 =  √(𝑥2 + 𝑦2) + 𝑤𝑟                            (7) 

                               𝑎 = arctan (
𝑦

𝑥
) + 𝑤𝑎                               (8) 

 The measurement noises 𝑤𝑟 and 𝑤𝑎 are assumed to be zero 
mean white Gaussian with standard deviations σr and σa  
respectively. Assume that the sensor is at the origin which 
takes measurements of the target at every T=1sec, with 
measurement accuracy  σr  = 0.2 m and  σa = 2 mrad. The target 
has process noise intensity �̃� = 10−3 m2/s3. 

       

            (a) Short Range (50 km)                       (b) Long Range (2711 km) 

Fig.4, Evaluation of Average Normalized Estimation Error Square (ANEES) 

for conventional CMKF and EKF to check covariance consistency   
 

From the Fig.4, in sort range both approaches i.e converted 
measurement approach and mixed coordinate approach are 
consistent and performs equally. But as the range increases 
EKF becomes unstable, though CMKF is stable still filter 
calculated covariance is much lower than the actual one. 
Though the actual uncertainty is a curved shape like a banana 
which is increasingly nonGaussian, both the filters 
approximate it as a Gaussian ellipse as shown in the Fig.5 (a) 
& Fig.5(b). Overlap between the actual and approximated 
uncertainty decreases as the range increases and filter becomes 
inconsistent. 

 

                (a) Short Range                                        (b) Long Range 

 Fig.5 Measurement uncertainty and Gaussian approximation by basic filters 
in Cartesian coordinate   

 From the above results, for the general banana problem, the 
standard CMKF and EKF have their working limits beyond 
which they will show consistency problems and have loss in 
accuracy [4]. 
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III. CONVERTED MEASUREMENT KALMAN FILTER 

 The polar to Cartesian conversion equations include a 
trigonometric function of a random variable. Though there are 
various issues with this type of conversion, two major issues to 
be considered are conversion and estimation bias. First the 
conversion introduces the bias in the mean of the converted 
random variable while using conventional conversion (1). The 
second is that the calculation of the converted measurement 
error covariance which requires the targets true range and 
bearing, unavailable in practice, so we have to evaluate the 
covariance using the measured position, this will introduce the 
correlation between measurement covariance estimate and the 
measurement error leading to an estimation bias when the 
converted measurements are used in tracking [8], [4], [2]. 

 Consistency, conversion and estimation biases are 
evaluated for the following four conversion processes [4], [5], 
[6], and [7] in various ranges as specified in the simulation 
scenarios described in [11]. 

o Conventional Measurement Conversion (CCM)  

o Unbiased Converted Measurement (UCM) 

o Modified Unbiased Converted Measurement (MUCM) 

o Decorrelated Unbiased Converted Measurement (DUCM) 

 

       a)  Position Error (Cartesian)                 (b) Position Error(Polar)  

                           
(c) Normalized Error Square (NES) Analysis 

 

Fig6. Evaluation of conversion bias and consistency for the target at 

Rang = 250 km, Azimuth =45 deg, σr  = 50 m and  σa = 15 deg. 

 

 
 

Fig7. Measurement uncertainty in Cartesian coordinate and Gaussian 

approximation by conversion methods for the target at Rang = 10124 km, 

Azimuth = 0 deg, σr  = 0.2 m and  σa = 2 mrad 

 

From the Fig.6 (a) and Fig. 6(b) CCM and MUCM 

introduce bias in the mean of the converted measurement 

while UCM is the only method produces the unbiased 

conversion. Fig6 (c) shows except CCM, other two methods 

are consistent and the reason for the inconsistency in CCM is 

explained in Fig7, i.e. poorly approximated measurement 

covariance in Cartesian coordinate. DUCM needed predicted 

position for the covariance calculation so its conversion bias 

was not evaluated.  

Since it is a modified version of UCM, DUCM is also 

an unbiased and consistent conversion method [2]. 

 

   

    (a) Short Range (50 km)                              (b) Long Range (2711.5 km) 

Fig.8 Consistency evaluation of Kalman filter which uses the different 
measurement conversion methods for the target at short and long ranges, 
Azimuth of 67.218 deg , σr  = 0.2 m ,σa = 2 mrad and number of Monte Carlo 
runs = 100. 

 

 
 

 

 
 

 

 
 

 
 

                (a) Short Range                                            (b) Long Range               
Fig.9 Evaluation of Estimation bias for that target at short and long ranges, 
Azimuth of 67.218 deg , σr  = 0.2 m ,σa = 2 mrad and Number of Monte Carlo 
runs = 100. 

 Fig.8 and Fig.9 shows that all four methods gives 
acceptable performance in short range but as the range 
increases bias and consistency problems are more visible. 
  

TABLE-1 Conversion and Estimation Bias 

S.
No 

Algorithm 
Conversion 

Bias 
Estimation 

Bias 
Filter  

Output 

1 CCMKF Biased Biased Biased 

2 UCMKF Unbiased Biased Biased 

3 MUCMKF Biased Biased Unbiased 

4 DUCMKF Unbiased Unbiased Unbiased 

  

 Results are tabulated in Table-1, since both conversion and 
estimated biases are opposite in nature for MUCMKF, the final 
output will be unbiased. DUCMKF is the only filter which is 
consistent, unbiased and gives better RMSE performance 
among four methods. 

IV. MIXED COORDINATE FILTER 

 In the "mixed coordinate" EKF the state is maintained in 
Cartesian coordinates and the measurements are utilized in 
their polar form. There is a nonlinear measurement prediction 
equation and linearization of the measurement equation is 
required for the state and covariance update [4]. From section 
II it was concluded that EKF becomes inconsistent in long 
ranges due to severe non linearity introduced in the 
measurement equation. Filter divergence in many nonlinear 
filtering problems occurs only when the track accuracy is low. 
If the track is accurate enough, local linearization can be 
effectively used, and the EKF will yield consistent and near-
optimal tracking performance. MCAEKF guarantees the 
overall consistency of EKF by adaptively changing the 
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measurement covariance matrix in the early stage of filtering. 
The only drawback of the MCA approach is that it has range 
accuracy loss in the early stages of the filtering due to the 
intentionally enlarged measurement noise covariance.  

 Key for the MCAEKF is to characterize and quantify the 
curvature of the posterior uncertainty region. Fig.10 shows a 
converted measurement uncertainty region and approximated 
the Gaussian uncertainty with the same center and thickness. 
The “distance” DC  characterize the impact of the curvature at 
a point in the curved uncertainty region to the corresponding 
Gaussian uncertainty region. 

 

Fig 10. The quantification of the curvature of a 
curved  uncertainty region 

 For a point 𝑋 = [ 𝑥   �̇�   𝑦   �̇�  ]′ in the curved uncertainty 
region, from simple geometry one has 

𝑟𝑒 =  √�̂�2 + �̂�2                                         (9) 

𝑟𝑝 =  
(𝑥�̂�+𝑦�̂�)

√(𝑥2+𝑦2)
                                     (10) 

where re is the range at �̂� , rp is the range re projected 
on x. From simple geometry one has 

𝐷𝐶
𝑟(𝑋) =

(𝑟𝑒)2

𝑟𝑝 − 𝑟𝑒                                  (11) 

 The distance 𝐷𝐶
𝑟(𝑋)  is interpreted as the error introduced 

by the corresponding measurement nonlinearity. Find the 
minimum required measurement covariance to ensure 
consistency by providing sufficient intersection between 
predicated and measurement uncertainties as per steps in [9]. 

 

Fig.11 Filtered Output in the 3rd scan for the EKF and MCAEKF filter, target 
at long range, azimuth of 0 deg , σr  = 0.2 m ,σa = 2 mrad  

 Filter divergence in EKF is explained in Fig.11, where 
intersection of measured and predicted measurement 
(Significant Region (SR)) [9] is not covered by the EKF’s 
filtered output, leads to inconsistency. But MCAEKF’s filtered 
output covers entire SR due to inflated measurement 
covariance, this in turn ensures the consistency. 

 

(a) Short Range 

  

                                                                                 

                                                     (b) Long Range 
                  

Fig.12, Evaluation of consistency and RMSE in range for that target at short, 
long ranges, Azimuth of 67.218 deg , σr  = 0.2 m ,σa = 2 mrad and Number of 
Monte Carlo runs = 100. 

 From the Fig.12, MCAEKF overcomes the consistency 
problem in EKF for long range targets by sacrificing range 
accuracy in the early stages of filtering. 

V. REGULARIZED PARTICLE FILTER(RPF) 

 The key idea of the particle filter is to represent the 
Bayesian filter’s posterior density by the random set of 
weighted samples (point masses). As the number of samples 
becomes very large they effectively provide an exact 
equivalent representation to the usual functional description of 
the posterior pdf. Estimate of the moments such as mean and 
covariance can be obtained directly from the samples. The 
basic particle filter encounters two significant problems 
namely particle degeneracy and sample impoverishment [13]. 
Many particle filter versions exist that attempt to alleviate these 
problems by choosing proper importance density and 
resampling. A recent study shows that for the banana problem, 
version of the particle filter called Regularized Particle Filter 
[11] gives the optimal performance and it is evaluated in this 
section. 

 The regularized particle filter attempts to avoid the problem 
of sample impoverishment by changing how the resampling 
step is done in the particle filter. The resampling step samples 
particles from a discrete distribution which creates exact 
duplicate particles, leading to the impoverishment problem in 
the standard method. If samples are instead taken from a 
continuous approximation of the posterior density, no such 
duplication of particles will occur and this problem should be 
prevented. After initializing a set of particles, through the use 
of two-point differencing, the particle filter algorithm would 
then proceed as in [11] during each iteration (prior density is 
assumed as a proposal density). 

       

Fig.13 Consistency and RMSE Test for RPF in Long Range target scenarios  

From the Fig.13, RPF ensures consistency and achieves better 
RMSE in long range scenarios including early state 
performance at the expense of computational power. 

VI. MARGINALIZED PARTICLE FILTER(MPF) 

 Particle filters are the general solution to nonlinear and 
nonGaussian estimation problems and in general it requires a 
heavy computational power. If there is a linear sub-structure in 
the state-space model, this can be utilized in order to obtain 
better estimates and possibly reduce the computational 
demands [14], [15]. The idea is to partition the state vector 
according to 
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              𝑥𝑡 = [
𝑥𝑡

𝑙

𝑥𝑡
𝑛]                                             (12) 

Where 𝑥𝑡
𝑙 denotes the state variable with conditional linear 

dynamics and 𝑥𝑡
𝑛  denotes the nonlinear state variable. Using 

Bayes’ theorem linear state variable can be marginalized out 
and estimated using a finite-dimensional optimal filter. The 
remaining nonlinear state variables are then estimated using 
the particle filter. This is sometimes referred to as Rao-
Blackwellization [14]. 

The long range scenario we consider in this work has linear 
state equation and nonlinear measurement equation with 
Gaussian process and measurement noise. Since the position in 
the state vector is nonlinearly related the measurement, it is 
treated as a nonlinear state variable and velocities are treated 
as linear state variables. Linear and nonlinear state variables 
are defined as  

 𝑥𝑡 = [
𝑥𝑡

𝑙

𝑥𝑡
𝑛]                                      (13) 

𝑥𝑡
𝑙 = [ 𝑥, 𝑦]′                                   (14) 

 𝑥𝑡
𝑛 = [ 𝑣𝑥 , 𝑣𝑦]′                                (15) 

Where 𝑥𝑡 = [ 𝑥, 𝑣𝑥 , 𝑦, 𝑣𝑦]′  is a state vector. The generalized 

model described in [14] can be reduced as follows  

𝑥𝑡+1
𝑛 = 𝐴𝑛

𝑛𝑥𝑡
𝑛 + 𝐴𝑙

𝑛𝑥𝑡
𝑙 + 𝑤𝑡

𝑛                   (16) 

𝑥𝑡+1
𝑙 =       𝐴𝑙

𝑙𝑥𝑡
𝑙 + 𝑤𝑡

𝑙                        (17) 

   𝑦𝑡 = ℎ𝑡(𝑥𝑡
𝑛)   + 𝑒𝑡                        (18) 

Since  𝐴𝑛
𝑛, 𝐴𝑙

𝑛, 𝐴𝑙
𝑙 , 𝐺𝑛 and  𝐺𝑙  are independent of 𝑥𝑡

𝑛  and  𝐺𝑛 =
𝐺𝑙 = 𝐼 . 

𝑃𝑡/𝑡
(𝑖)

=  𝑃𝑡/𝑡   for   𝑖 = 1,2,3 … … 𝑁                (19) 

Where 𝑁 is the total number of particle and 𝑃𝑡/𝑡
(𝑖)

  is the Kalman 

filter covariance associated with each the particle  𝑖 .According 
to (19) only one instead of  𝑁  Riccati recursions is needed, 
which leads to a substantial reduction in computational 
complexity [15]. This is, of course, very important in real-time 
implementations. Since the measurement equation (18) does 

not contain any information about the linear state variables  𝑥𝑡
𝑙 

, actual measurements can’t be used to update the linear state 
variables.  Instead, all information from the measurements 
enters the Kalman filter implicitly via the second measurement 
update. Flow chart in the Fig.15 explains the process in MPF 
for banana problem. 

    

           (a) ANEES in Position                            (b) Position Error  

Fig.14 Consistency and RMSE Test for MPF with Resampling and 
Regularization in Long Range Target Scenario Defined in Section 2.3.  

 From the fig 14, it is observed that, with the same number 
of particles (as particle filter) MPF achieves better 
performance in less time compared to RPF. 

 

 

 Fig.15 MPF Flow Chart with Regularization 

VII. SIMULATION RESULTS 

              Monte Carlo simulations are carried for long range 
target scenario defined in [11] to analyze the performance 
benefits of the MPF compared to RPF.  

TABLE-2 Constant Time Simulation 

Parameter RPF MPF 

No of Particles  10000 11000 

RMSE Position(m) 906 848 

RMSE Velocity(m/s) 119.51 115.45 

RMSE Range (m) 0.1582 0.1581 

RMSE Azimuth(deg) 0.0191 0.0178 

Time (s) 0.8711 0.8803 

No of Monte Carlo Runs 1000 

 

TABLE-3 Constant Velocity RMSE Simulation 

Parameter RPF MPF 

No of Particles  10000 8000 

RMSE Position(m) 938 880 

RMSE Velocity(m/s) 121.37 122.05 

RMSE Range (m) 0.1585 0.1588 

RMSE Azimuth(deg) 0.0197 0.0185 

Time (s) 0.8790 0.6402 

No of Monte Carlo Runs 1000 

  

 From table 2, it is observed that for a given computational 
cost (constant execution time) MPF performs better than RPF. 
MPF can accommodate more number of particles in the given 
execution time compared to RPF, which makes MPFs 
performance superior compared to RPF. From table 3 for a 
given velocity RMSE (constant velocity RMSE), MPF 
achieves the target with less number of the particle than RPF. 
Particles in MPF occupies the two-dimensional space, instead, 
in RPF it occupies four-dimensional space, so less number of 
particles are sufficient to achieve the given target in MPF 
compared to RPF. 
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         VI.CONCLUSION 

  In the present work, use of the marginalization has been 
explored for the banana problem present in 2D long range 
tracking Radar to reduce the computational complexity of the 
existing particle filter solution. MPF, which is a powerful 
combination of PF and KF uses the linear substructure with 
Gaussian process noise present in the target model to reduce 
the computational complexity of the particle filter. Existing 
solutions based on the CMKF, MCF and RPF was evaluated, 
from the results RPF outperforms the two methods by 
sacrificing computational cost.   

 Proposed MPF solution for the banana problem has been 
thoroughly analyzed in a long range scenario and it was 
observed that for a given computational cost, MPF 
performance is better than the RPF and for the given accuracy 
requirement, MPF achieves with less number of particles 
compared to RPF in the long range tracking scenario for the 
banana problem. 

 As the range increases the amount of nonGaussianity 
present in the uncertainty region of the converted measurement 
increases which require more number of particles to achieve 
optimal performance, so a general solution which works for all 
ranges like DUCMKF may be attempted in future in the 
particle filter framework. 
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